1. Introduction to Polynomials – बहुपद का परिचय
English: Expressions formed using variables and constants with addition, subtraction and multiplication are called polynomials.
Hindi: चर और स्थिरांक से बने वे व्यंजक जिनमें जोड़, घटाव और गुणा हो, बहुपद कहलाते हैं।
2. Polynomial – बहुपद
General Form:
anxn + an-1xn-1 + … + a1x + a0
जहाँ सभी घातें धनात्मक पूर्णांक या शून्य होती हैं।
3. Degree of a Polynomial – बहुपद की घात
English: The highest power of the variable is called degree.
Hindi: चर की सबसे बड़ी घात बहुपद की घात कहलाती है।
4. Types of Polynomials (Based on Degree)
Constant Polynomial – स्थिर बहुपद
Degree = 0
Example: 5, −3
Linear Polynomial – रैखिक बहुपद
Degree = 1
General Form: ax + b
Quadratic Polynomial – द्विघात बहुपद
Degree = 2
General Form: ax² + bx + c
Cubic Polynomial – घन बहुपद
Degree = 3
Example: x³ + 2x² − x + 1
5. Zeroes of a Polynomial – बहुपद के शून्यक
English: α is a zero of p(x) if p(α)=0
Hindi: यदि p(α)=0 हो तो α बहुपद का शून्यक कहलाता है।
6. Graphical Representation – आलेखीय निरूपण
Zeroes are the points where the graph cuts the x-axis.
7. Relationship between Zeroes and Coefficients
For ax² + bx + c
- α + β = −b/a
- αβ = c/a
8. Division Algorithm for Polynomials – विभाजन विधि
p(x) = g(x) × q(x) + r(x)
जहाँ r(x) की घात g(x) से कम होती है।
9. Remainder Theorem – शेषफल प्रमेय
If p(x) is divided by (x − a), remainder = p(a)
10. Factor Theorem – गुणनखंड प्रमेय
(x − a) is a factor of p(x) if p(a)=0
11. Factorisation of Polynomials – गुणनखंडन
Writing polynomial as product of its factors.
Example: x² − 5x + 6 = (x − 2)(x − 3)
12. Number of Zeroes – शून्यकों की संख्या
| Degree | Maximum Zeroes |
|---|---|
| 0 | 0 |
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
13. Finding Zeroes by Factorisation
x² − 7x + 10 = (x − 5)(x − 2)
Zeroes: 5, 2
14. Zeroes of Linear Polynomial
Linear polynomial has exactly one zero.
15. Zeroes of Quadratic Polynomial
Methods: Factorisation, Quadratic Formula, Graph
16. Quadratic Formula – द्विघात सूत्र
x = [−b ± √(b² − 4ac)] / 2a
17. Nature of Zeroes
| Discriminant | Nature of Zeroes |
|---|---|
| D > 0 | Two distinct real |
| D = 0 | Equal real |
| D < 0 | No real zero |
18. Verification of Relationship
Verify α+β and αβ using coefficients.
19. Important Identities
- (a+b)² = a² + 2ab + b²
- (a−b)² = a² − 2ab + b²
- a² − b² = (a−b)(a+b)
20. Important Exam Questions
- Find zeroes of polynomial
- Verify relationship
- Find remainder
- Factorise polynomial