Class 12 Math Ch-3 आव्यूह MCQs

💁 Study Raw

📅 26/01/2026

नीचे दिए गए सभी Questions Bihar Board परीक्षा 2026 के लिए “Very Important Questions” (अत्यंत महत्वपूर्ण प्रश्न) हैं। इन सभी Class 12th के (Mathematics/गणित) = गणित भाग-1 (Hindi Medium) Book Chapter-3 आव्यूह का Questions का Solve का  वीडियो Youtube और Website पर Upload किया गया है।

Class 12 Math Ch-3 आव्यूह MCQs

1. $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} =$ [BSEB, 2018 A]
(A) 2
(B) -2
(C) 0
(D) 1

2. $\begin{bmatrix} 2 & -3 \\ 5 & 4 \end{bmatrix} + \begin{bmatrix} -2 & 3 \\ -5 & -4 \end{bmatrix} =$ [BSEB, 2024 A]
(A) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
(B) $\begin{bmatrix} 4 & -6 \\ 10 & 8 \end{bmatrix}$
(C) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
(D) None of these

3. $\begin{vmatrix} \cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ \end{vmatrix} =$ [BSEB, 2021 A]
(A) 0
(B) 1
(C) -1
(D) $1/2$

4. If $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ then $A^2$ is: [BSEB, 2013, 2021 A]
(A) $27A$
(B) $2A$
(C) $3A$
(D) $I$

5. $[x \quad y] = [2x – 1 \quad 7] \Rightarrow$ [BSEB, 2024 A]
(A) $x = 3, y = 9$
(B) $x = 1, y = 9$
(C) $x = 0, y = 9$
(D) $x = 3, y = 4$

6. If $A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$ and $|A^3| = 125$ then $\alpha =$ [BSEB, 2025 A]
(A) $\pm 3$
(B) $\pm 2$
(C) $\pm 5$
(D) 0

7. Total number of all possible matrices of order $3 \times 3$ with each entry 0 or 1 is: [BSEB, 2017 C, 2020 A]
(A) 27
(B) 18
(C) 81
(D) 512

8. $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} x & y \\ z & w \end{vmatrix} \Rightarrow$ [BSEB, 2024 A]
(A) $ad – bc = xw – yz$
(B) $a = x, b = y, c = z, d = w$
(C) $a+b+c+d = x+y+z+w$
(D) None of these

9. $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow A^{100} =$ [BSEB, 2025 A]
(A) $100A$
(B) $101A$
(C) $A$
(D) $99A$

10. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $A^2$ will be: [BSEB, 2013]
(A) $\begin{bmatrix} a^2 & b^2 \\ c^2 & d^2 \end{bmatrix}$
(B) $\begin{bmatrix} a^2+bc & ab+bd \\ ac+dc & dc+d^2 \end{bmatrix}$
(C) $\begin{bmatrix} a^3 & b^3 \\ c^3 & d^3 \end{bmatrix}$
(D) None

11. $\begin{bmatrix} 1 \\ 0 \end{bmatrix} [5 \quad 6] =$ [BSEB, 2022 A]
(A) $[5 \quad 6]$
(B) $\begin{bmatrix} 5 \\ 6 \end{bmatrix}$
(C) $\begin{bmatrix} 0 & 0 \\ 5 & 6 \end{bmatrix}$
(D) $\begin{bmatrix} 5 & 6 \\ 0 & 0 \end{bmatrix}$

12. A matrix $A = [a_{ij}]_{m \times n}$ is symmetric if: [BSEB, 2013, 2020 A]
(A) $a_{ij} = 0$
(B) $a_{ij} = a_{ji}$
(C) $a_{ij} = -a_{ji}$
(D) $a_{ij} = 1$

13. $\begin{vmatrix} 10 & 2 \\ 30 & 6 \end{vmatrix} =$ [BSEB, 2021 A]
(A) 0
(B) 60
(C) 120
(D) 10

14. If $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$, then $|2A| =$ [BSEB, 2011]
(A) $2|A|$
(B) $4|A|$
(C) $8|A|$
(D) $|A|$

15. If $\theta + \phi = 90^\circ$ then $\begin{vmatrix} \cos \theta & \sin \theta \\ \sin \phi & \cos \phi \end{vmatrix} =$ [BSEB, 2018 C]
(A) 1
(B) 0
(C) -1
(D) $\infty$

16. $x \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + y \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} =$ [BSEB, 2024 A]
(A) $\begin{bmatrix} x & y \\ y & x \end{bmatrix}$
(B) $\begin{bmatrix} y & x \\ x & y \end{bmatrix}$
(C) $\begin{bmatrix} x & y \\ x & y \end{bmatrix}$
(D) $\begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}$

17. If $A = \begin{bmatrix} \lambda & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$ where $A^2 = B$, then the value of $\lambda$ is: [BSEB, 2021 A]
(A) -1
(B) 1
(C) 4
(D) No real value

18. $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow A^5 =$ [BSEB, 2024 A]
(A) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
(B) $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$
(C) $\begin{bmatrix} 0 & 5 \\ 5 & 0 \end{bmatrix}$
(D) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

19. If $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ then $A^3 =$ [BSEB, 2018 C, 2021 A]
(A) $3A$
(B) $2A$
(C) $4A$
(D) $A$

20. Value of $\begin{vmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{vmatrix}$ is: [BSEB, 2021 A]
(A) $\cos^2 x – \sin^2 x$
(B) 0
(C) 1
(D) -1

21. Construct a $2 \times 2$ matrix $A = [a_{ij}]$ whose elements are given by $a_{ij} = \frac{(i+2j)^2}{2}$: [BSEB, 2015]
(A) $\begin{bmatrix} 4.5 & 12.5 \\ 8 & 18 \end{bmatrix}$
(B) $\begin{bmatrix} 4 & 12 \\ 8 & 18 \end{bmatrix}$
(C) $\begin{bmatrix} 9 & 25 \\ 16 & 36 \end{bmatrix}$
(D) $\begin{bmatrix} 4.5 & 8 \\ 12.5 & 18 \end{bmatrix}$

22. If $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then: [BSEB, 2021 A]
(A) $A^{-1}$ exists
(B) $|A| = 0$
(C) $A^{-1}$ does not exist
(D) None of these

23. $\begin{vmatrix} \sin 20^\circ & -\cos 20^\circ \\ \sin 70^\circ & \cos 70^\circ \end{vmatrix} = ?$ [BSEB, 2019 A]
(A) 1
(B) -1
(C) 0
(D) 2

24. $\begin{bmatrix} 7 & 6 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} =$ [BSEB, 2022 A]
(A) $\begin{bmatrix} 8 & 6 \\ 0 & 0 \end{bmatrix}$
(B) $\begin{bmatrix} 7 & 0 \\ 0 & -1 \end{bmatrix}$
(C) $\begin{bmatrix} 7 & 6 \\ 0 & -1 \end{bmatrix}$
(D) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

25. Value of $x$ when $\begin{vmatrix} x & 15 \\ 4 & 4 \end{vmatrix} = 0$: [BSEB, 2019 A]
(A) 15
(B) -15
(C) 4
(D) $4x$

26. $A = [a_{ij}]_{m \times n}$ is a square matrix if: [BSEB, 2010, 2012, 2020 A, 2024 A]
(A) $m = n$
(B) $m < n$ (C) $m > n$
(D) None of these

27. If $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then $A^3$ is: [BSEB, 2020 A]
(A) $3A$
(B) $A$
(C) $I$
(D) None of these

28. If $A$ is a $3 \times 3$ matrix such that $A^2 = A$, then $(A + I)^3 – 7A$ is equal to? [BSEB, 2018 A]
(A) $I_3$
(B) $A$
(C) $3A$
(D) $I_3 – A$

29. If $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then the value of $A^{25}$ is: [BSEB, 2023 A]
(A) $25A$
(B) $24A$
(C) $2A$
(D) $A$

30. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then $A + A’ =$ [BSEB, 2021 A]
(A) $\begin{bmatrix} 2 & 5 \\ 5 & 8 \end{bmatrix}$
(B) $\begin{bmatrix} 5 & 2 \\ 8 & 5 \end{bmatrix}$
(C) $\begin{bmatrix} 2 & 2 \\ 5 & 5 \end{bmatrix}$
(D) $\begin{bmatrix} 8 & 5 \\ 5 & 2 \end{bmatrix}$

31. Adjoint of matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is: [BSEB, 2023 A]
(A) $\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$
(B) $\begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}$
(C) $\begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$
(D) $\begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}$

32. $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} =$ [BSEB, 2010, 2017, 2020 A]
(A) $(a-b)(b-c)(c-a)$
(B) $abc(a-b)(b-c)(c-a)$
(C) $(a+b+c)(a-b)(b-c)(c-a)$
(D) 0

33. If $A$ is a $3 \times 3$ matrix, then $|kA| =$ [BSEB, 2022 A]
(A) $k|A|$
(B) $k^2|A|$
(C) $k^3|A|$
(D) $3k|A|$

34. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then $|A| =$ [BSEB, 2014]
(A) -2
(B) 2
(C) 10
(D) -10

35. $\begin{vmatrix} 1 & 2 & 4 \\ 0 & 3 & 5 \\ 0 & 0 & 7 \end{vmatrix} =$ [BSEB, 2024 A]
(A) 21
(B) 0
(C) 15
(D) 10

36. $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} =$ [BSEB, 2025 A]
(A) $\begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$
(B) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
(C) $\begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix}$
(D) $\begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$

37. $[6 \quad 5] \begin{bmatrix} 1 \\ -1 \end{bmatrix} =$ [BSEB, 2023 A]
(A) $[6 \quad -5]$
(B) $[-5 \quad 6]$
(C) $[1]$
(D) $[11]$

38. If $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$ then $adjoint A =$ [BSEB, 2022 A]
(A) $\begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix}$
(B) $\begin{bmatrix} -2 & 3 \\ 1 & -4 \end{bmatrix}$
(C) $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$
(D) $\begin{bmatrix} 4 & 3 \\ 1 & -2 \end{bmatrix}$

39. $5 \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} =$ [BSEB, 2024 A]
(A) $\begin{bmatrix} 25 & 30 \\ 35 & 8 \end{bmatrix}$
(B) $\begin{bmatrix} 25 & 30 \\ 35 & 40 \end{bmatrix}$
(C) $\begin{bmatrix} 5 & 6 \\ 35 & 40 \end{bmatrix}$
(D) $\begin{bmatrix} 25 & 30 \\ 25 & 40 \end{bmatrix}$

40. $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} \Rightarrow A’ =$ [BSEB, 2019 C]
(A) $\begin{bmatrix} -1 & -2 \\ 1 & 3 \end{bmatrix}$
(B) $\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$
(C) $\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$
(D) $\begin{bmatrix} -1 & 1 \\ -2 & 3 \end{bmatrix}$

41. Value of $\begin{vmatrix} 7 & 11 & 13 \\ 17 & 19 & 23 \\ 29 & 31 & 37 \end{vmatrix}$ is: [BSEB, 2022 A]
(A) 0
(B) 1
(C) 130
(D) 37

42. What is the value of $x$ if $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$: [BSEB, 2021 A]
(A) 6
(B) $\pm 6$
(C) -6
(D) 0

43. $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 \end{bmatrix} =$ [BSEB, 2023 A]
(A) $\begin{bmatrix} 2 & 3 & 4 \\ 4 & 6 & 8 \\ 6 & 9 & 12 \end{bmatrix}$
(B) $\begin{bmatrix} 2 & 4 & 6 \\ 3 & 6 & 9 \\ 4 & 8 & 12 \end{bmatrix}$
(C) $[20]$
(D) None of these

44. $A = \begin{bmatrix} 9 & 10 & 11 \\ 12 & 13 & 14 \end{bmatrix}, B = \begin{bmatrix} 11 & 10 & 9 \\ 8 & 7 & 6 \end{bmatrix} \Rightarrow 2A + 2B =$ [BSEB, 2016 C]
(A) $\begin{bmatrix} 20 & 20 & 20 \\ 20 & 20 & 20 \end{bmatrix}$
(B) $\begin{bmatrix} 40 & 40 & 40 \\ 40 & 40 & 40 \end{bmatrix}$
(C) $\begin{bmatrix} 20 & 40 & 40 \\ 40 & 40 & 40 \end{bmatrix}$
(D) $\begin{bmatrix} 40 & 40 & 40 \\ 20 & 20 & 20 \end{bmatrix}$

45. For any Identity matrix $I$: [BSEB, 2015]
(A) $I^2 = I$
(B) $|I| = 0$
(C) $|I| = 2$
(D) $|I| = 5$

46. If the inverse of matrix $A$ is $B$, then $AB = BA =$ [BSEB, 2018 C, 2020 A]
(A) $A$
(B) $B$
(C) $I$
(D) Null Matrix

47. $\begin{vmatrix} -\sin \theta & \cos \theta \\ \sec \theta & \text{cosec } \theta \end{vmatrix} =$ [BSEB, 2023 A]
(A) 0
(B) -1
(C) -2
(D) $-\sin 2\theta$

48. Transpose of matrix $\begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix}$ is: [BSEB, 2022 A]
(A) $\begin{bmatrix} 5 & 6 \\ -1 & 7 \end{bmatrix}$
(B) $\begin{bmatrix} 6 & 7 \\ 5 & -1 \end{bmatrix}$
(C) $\begin{bmatrix} -1 & 5 \\ 7 & 6 \end{bmatrix}$
(D) $\begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix}$

49. $[13 \quad 15] \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} =$ [BSEB, 2023 A]
(A) $[13 \quad 15]$
(B) $[15 \quad 13]$
(C) $[-1 \quad 4]$
(D) $[26 \quad 30]$

50. If $x \begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$, then the value of $x$ is: [BSEB, 2018 A]
(A) $x=3$
(B) $x=2$
(C) $x=1$
(D) $x=5$

51. If $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ then $A^n =$ [BSEB, 2018 A]
(A) $\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$
(B) $\begin{bmatrix} n & n \\ 0 & n \end{bmatrix}$
(C) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
(D) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

52. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} =$ [BSEB, 2023 A]
(A) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
(B) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
(C) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
(D) $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

53. If $A = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$ where $i^2 = -1$, then $A^2 =$ [BSEB, 2017 A]
(A) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
(B) $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
(C) $\begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$
(D) $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$

54. If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ then $A + A’ = I$, if the value of $\alpha$ is: [BSEB, 2018 A, 2021 A]
(A) $\pi/6$
(B) $\pi$
(C) $\pi/3$
(D) $3\pi/3$

55. Matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is what type of matrix? [BSEB, 2023 A]
(A) Identity Matrix
(B) Scalar Matrix
(C) Square Matrix
(D) All of the above

56. $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \Rightarrow A^2 =$ [BSEB, 2016 C]
(A) $2A$
(B) $A$
(C) $\frac{1}{2}A$
(D) $4A$

57. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 0 & 4 \end{bmatrix} =$ [BSEB, 2023 A]
(A) $\begin{bmatrix} 2 & -3 \\ 0 & 4 \end{bmatrix}$
(B) $\begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$
(C) $\begin{bmatrix} 3 & -3 \\ 0 & 5 \end{bmatrix}$
(D) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

58. A matrix $A = [a_{ij}]_{m \times n}$ is skew-symmetric if: [BSEB, 2013, 2020 A]
(A) $a_{ij} = -a_{ji}$
(B) $a_{ij} = a_{ji}$
(C) $a_{ij} = 0$
(D) $a_{ij} = 1$

59. $\begin{bmatrix} 2 & 5 \\ 8 & 10 \end{bmatrix} \begin{bmatrix} 5 \\ 50 \end{bmatrix} =$ [BSEB, 2022 A]
(A) $[260 \quad 540]$
(B) $\begin{bmatrix} 260 \\ 540 \end{bmatrix}$
(C) $\begin{bmatrix} 10 & 25 \\ 400 & 500 \end{bmatrix}$
(D) $\begin{bmatrix} 35 \\ 900 \end{bmatrix}$

60. $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \Rightarrow A’ =$ [BSEB, 2025 A]
(A) $[1 \quad 2 \quad 3]$
(B) $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$
(C) $[3 \quad 2 \quad 1]$
(D) $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

61. If $A = \begin{bmatrix} 4\alpha & 0 \\ 5 & 1 \end{bmatrix}, B = \begin{bmatrix} 16 & 0 \\ 5 & 1 \end{bmatrix}$, where $A = B$ then value of $\alpha$ is: [BSEB, 2021 A]
(A) 1
(B) -1
(C) 4
(D) None of these

62. $A = [a_{ij}]_{n \times n}$ is symmetric if: [BSEB, 2013]
(A) $a_{ij} = 0$
(B) $a_{ij} = -a_{ji}$
(C) $a_{ij} = a_{ji}$
(D) $a_{ij} = 1$

63. If $2 \begin{bmatrix} x & 5 \\ 7 & y-3 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix}$ then $(x, y) =$ [BSEB, 2019 A]
(A) $(2, 9)$
(B) $(3, 8)$
(C) $(2, 7)$
(D) $(9, 2)$

64. If $A = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$ then $adjoint A =$ [BSEB, 2024 A]
(A) $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$
(B) $\begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix}$
(C) $\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$
(D) $\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$

65. $\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} =$ [BSEB, 2023 A]
(A) $\begin{bmatrix} 4 & 6 \\ 25 & 35 \end{bmatrix}$
(B) $\begin{bmatrix} 4 & 15 \\ 10 & 35 \end{bmatrix}$
(C) $[19 \quad 45]$
(D) $\begin{bmatrix} 19 \\ 45 \end{bmatrix}$

66. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} =$ [BSEB, 2021 A]
(A) $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$
(B) $\begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$
(C) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
(D) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

67. Find the value of $\begin{vmatrix} 1 & -1 \\ y & x \end{vmatrix}$: [BSEB, 2019 A]
(A) $x + y$
(B) $x – y$
(C) $-y – x$
(D) $1 – x$

68. Inverse of $A = \begin{bmatrix} 2 & 3 \\ 5 & k \end{bmatrix}$ will not exist if value of $k$ is: [BSEB, 2015]
(A) 2
(B) $3/2$
(C) $5/2$
(D) $15/2$

69. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then $AI = ?$ [BSEB, 2019 C]
(A) $\begin{bmatrix} 2 & 2 \\ 3 & 5 \end{bmatrix}$
(B) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
(C) $\begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$
(D) None

70. If $A$ is a square matrix then $A – A’$ will be: [BSEB, 2018 C]
(A) Symmetric matrix
(B) Skew-symmetric matrix
(C) Null matrix
(D) Identity matrix

71. If $A^T$ is the transpose of $A = [a_{ij}]_{m \times n}$, then order of $A^T$ is: [BSEB, 2012]
(A) $m \times n$
(B) $n \times m$
(C) $n \times n$
(D) $m \times m$

72. $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow X^8 =$ [BSEB, 2022 A]
(A) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
(B) $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$
(C) $\begin{bmatrix} 0 & 8 \\ 8 & 0 \end{bmatrix}$
(D) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

73. $[2a – 7 \quad 1] = [a \quad b – 1] \Rightarrow (a, b) =$ [BSEB, 2023 A]
(A) $(1, 7)$
(B) $(2, 7)$
(C) $(7, 2)$
(D) $(2, 3)$

74. Which of the following is a $3 \times 3$ identity matrix? [BSEB, 2019 A]
(A) $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
(B) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
(C) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$
(D) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

75. $A = \begin{bmatrix} 3 & 6 \\ 5 & -4 \end{bmatrix}, B = \begin{bmatrix} 7 & 8 \\ 5 & 6 \end{bmatrix} \Rightarrow 2A + 3B =$ [BSEB, 2016 A, 2019 A]
(A) $\begin{bmatrix} 27 & 24 \\ 22 & 10 \end{bmatrix}$
(B) $\begin{bmatrix} 27 & 36 \\ 35 & 10 \end{bmatrix}$
(C) $\begin{bmatrix} 27 & 36 \\ 25 & 15 \end{bmatrix}$
(D) $\begin{bmatrix} 27 & 36 \\ 25 & 10 \end{bmatrix}$

76. If $A = \begin{bmatrix} 2 & -3 \\ 4 & 6 \end{bmatrix}$ then $A^{-1} =$ [BSEB, 2024 A]
(A) $\begin{bmatrix} \frac{1}{4} & \frac{1}{8} \\ -\frac{1}{6} & \frac{1}{12} \end{bmatrix}$
(B) $\begin{bmatrix} \frac{1}{4} & \frac{1}{8} \\ \frac{1}{6} & \frac{1}{12} \end{bmatrix}$
(C) $\begin{bmatrix} \frac{4}{8} & \frac{8}{12} \\ 6 & 12 \end{bmatrix}$
(D) $\begin{bmatrix} 4 & 8 \\ -6 & 12 \end{bmatrix}$

77. Inverse of $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is: [BSEB, 2010]
(A) $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$
(B) $\begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$
(C) $\begin{bmatrix} -\cos \theta & -\sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$
(D) None of these

78. If $A = \begin{bmatrix} 3 & 6 \\ -5 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 7 & 8 \\ 5 & 6 \end{bmatrix}$ then $6A – 5B =$ [BSEB, 2024 A]
(A) $\begin{bmatrix} 17 & 4 \\ 5 & 54 \end{bmatrix}$
(B) $\begin{bmatrix} 17 & -4 \\ 5 & 54 \end{bmatrix}$
(C) $\begin{bmatrix} -17 & -4 \\ -55 & -6 \end{bmatrix}$
(D) $\begin{bmatrix} 17 & -4 \\ -55 & -54 \end{bmatrix}$

79. Adjoint of $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is: [BSEB, 2012]
(A) $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$
(B) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
(C) $\begin{bmatrix} \cos \theta & -\sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$
(D) $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

80. Matrix $\begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$ is: [BSEB, 2021 A]
(A) Skew-symmetric matrix
(B) Symmetric matrix
(C) Identity matrix
(D) None of these

81. If $A^2 + A + I = 0$ then inverse of $A$ is: [BSEB, 2025 A]
(A) $A$
(B) $A + I$
(C) $I – A$
(D) $A – I$

82. Adjoint of matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is: [BSEB, 2023 A]
(A) $\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$
(B) $\begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}$
(C) $\begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$
(D) $\begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}$

83. If a matrix has 18 elements, how many possible orders can it have?
(A) 3
(B) 4
(C) 6
(D) 5

84. If $\begin{vmatrix} 1-x & 2 \\ 18 & 6 \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$ then $x =$ [BSEB, 2013]
(A) $\pm 6$
(B) 6
(C) -5
(D) 7

85. Condition for the product of two matrices $A$ and $B$ to be defined is: [BSEB, 2018 C]
(A) No. of rows of $A$ = No. of columns of $B$
(B) No. of rows of $A$ = No. of rows of $B$
(C) No. of columns of $A$ = No. of rows of $B$
(D) No. of columns of $A$ = No. of columns of $B$

86. If $A$ and $B$ are square matrices, then $(AB)’ =$ [BSEB, 2012]
(A) $B’A’$
(B) $A’B’$
(C) $AB’$
(D) $A’B$

87. If $A = \begin{bmatrix} 9 & 10 & 11 \\ 12 & 13 & 14 \end{bmatrix}$ and $B = \begin{bmatrix} 11 & 10 & 9 \\ 8 & 7 & 6 \end{bmatrix}$ then $A + B = ……$ [BSEB, 2017 A]
(A) $\begin{bmatrix} 20 & 20 & 20 \\ 20 & 20 & 20 \end{bmatrix}$
(B) $\begin{bmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \end{bmatrix}$
(C) $\begin{bmatrix} 10 & 5 & 10 \\ 5 & 10 & 10 \end{bmatrix}$
(D) $\begin{bmatrix} 25 & 10 & 15 \\ 15 & 10 & 25 \end{bmatrix}$

88. If a square matrix $A$ is such that $3A^3 + 2A^2 + 5A + I = 0$, then $A^{-1}$ is equal to: [BSEB, 2022 A]
(A) $3A^2 + 2A + 5I$
(B) $-3A^2 – 2A – 5I$
(C) $-3A^2 + 2A – 5I$
(D) None of these

89. If $A$ is an invertible matrix of order $n \times n$ then: [BSEB, 2019 A]
(A) $n|A|$
(B) $|A|^{n-1}$
(C) $|A|$
(D) $|A|^n$

90. Let $A$ be an invertible matrix of order $2 \times 2$, then $|A^{-1}| =$ [BSEB, 2011]
(A) $|A|$
(B) $1/|A|$
(C) 0
(D) 1

91. Let $A$ be an invertible matrix of order $2 \times 2$, then $|adj A| = ……$ [BSEB, 2019 A]
(A) $2|A|$
(B) $|A|$
(C) $|A|^2$
(D) $|A|^3$

92. If $A$ is an invertible matrix of order 2 then $\det(A^{-1})$ will be equal to: [BSEB, 2020 A]
(A) $\det(A)$
(B) $1/\det(A)$
(C) 1
(D) 0

93. If $A$ is an invertible square matrix of order $3 \times 3$, then $|adj A|$ is equal to: [BSEB, 2020 A]
(A) $|A|$
(B) $|A|^2$
(C) $|A|^3$
(D) $3|A|$

94. If $A$ and $B$ are symmetric matrices of the same order, then $AB – BA$ is a: [BSEB, 2017 C, 2020 A]
(A) Skew-symmetric matrix
(B) Symmetric matrix
(C) Null matrix
(D) Identity matrix

95. $[1 \quad 2] \begin{bmatrix} 1 \\ 2 \end{bmatrix} =$ [BSEB, 2019 C]
(A) $[5]$
(B) $\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$
(C) $[1 \quad 4]$
(D) None of these

96. $[3 \quad 4 \quad 5] + [1 \quad 2 \quad 1] =$ [BSEB, 2019 C]
(A) $[4 \quad 6 \quad 6]$
(B) $\begin{bmatrix} 4 \\ 6 \\ 6 \end{bmatrix}$
(C) $[4 \quad 6 \quad 4]$
(D) $[6 \quad 4 \quad 6]$

97. If $\begin{bmatrix} x+y & 3 \\ 4 & x-y \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 4 & -3 \end{bmatrix}$ then $(x, y)$ is:
(A) $(-1, 2)$
(B) $(-1, -2)$
(C) $(-2, -1)$
(D) $(1, -2)$

98. If $A$ is a square matrix then $A + A’$ will be a …….. [BSEB, 2017 C, 2018 A, 2021 A]
(A) Symmetric matrix
(B) Skew-symmetric matrix
(C) Null matrix
(D) Identity matrix

99. $[-1] [-1] =$ [BSEB, 2023 A]
(A) $[0]$
(B) $[-1 \quad -1]$
(C) $[1]$
(D) $[2 \quad -2]$

100. $5 \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} =$ [BSEB, 2024 A]
(A) $\begin{bmatrix} 25 & 30 \\ 35 & 8 \end{bmatrix}$
(B) $\begin{bmatrix} 25 & 30 \\ 35 & 40 \end{bmatrix}$
(C) $\begin{bmatrix} 5 & 6 \\ 35 & 40 \end{bmatrix}$
(D) $\begin{bmatrix} 25 & 30 \\ 25 & 40 \end{bmatrix}$

Advertisements

Bihar Board Class 12th के (Mathematics/गणित) = गणित भाग-1 (Hindi Medium) Book Chapter-3 आव्यूह के Exam 2026 MCQs Questions Answer Key

Q.No.Ans.Q.No.Ans.Q.No.Ans.Q.No.Ans.Q.No.Ans.Q.No.Ans.Q.No.Ans.Q.No.Ans.
1(B)14(B)27(B)40(B)53(B)66(C)79(A)92(B)
2(A)15(B)28(A)41(A)54(C)67(A)80(B)93(B)
3(A)16(A)29(D)42(B)55(D)68(D)81(B)94(A)
4(C)17(D)30(A)43(A)56(A)69(B)82(A)95(A)
5(A)18(A)31(A)44(B)57(A)70(B)83(C)96(A)
6(A)19(A)32(A)45(A)58(A)71(B)84(D)97(C)
7(D)20(C)33(C)46(C)59(B)72(D)85(C)98(A)
8(A)21(A)34(A)47(B)60(D)73(C)86(A)99(C)
9(C)22(A)35(A)48(A)61(C)74(B)87(A)100(B)
10(B)23(A)36(B)49(D)62(C)75(D)88(B)
11(D)24(C)37(C)50(A)63(A)76(A)89(B)
12(B)25(A)38(A)51(A)64(A)77(A)90(B)
13(A)26(A)39(B)52(A)65(D)78(C)91(B)
Advertisements
Advertisements

Study Raw Bihar News Social Media Links:

Study Raw: Education World of India आप सभी Students के सहूलियत के लिए Social Media पर भी सारे Students को Bihar के सारे News से Updated रखते है। आपलोग नीचे दिए किसी भी Social Media से जुर सकते हैं। Follow us with following link mentioned below.

Android AppPlay Store
YouTube ChannelSubscribe
What's AppFollow
Telegram PageFollow
Facebook PageFollow
Twitter PageFollow
Linked-InFollow

Leave a Reply

Your email address will not be published. Required fields are marked *

Bihar मे 4-Year Graduation का पूरा Syllabus सभी University के लिए Download करे नीचे दिए Link से

University NameSyllabus
BRABU Universit BA BSc BCom SyllabusSyllabus
LNMU Universit BA BSc BCom SyllabusSyllabus
TMBU Universit BA BSc BCom SyllabusSyllabus
VKSU Universit BA BSc BCom SyllabusSyllabus
BNMU Universit BA BSc BCom SyllabusSyllabus
Jai Prakash Universit BA BSc BCom SyllabusSyllabus
Patliputra University BA BSc BCom SyllabusSyllabus
Purnea University BA BSc BCom SyllabusSyllabus
Magadh University BA BSc BCom SyllabusSyllabus
Munger University BA BSc BCom SyllabusSyllabus
Patna University BA BSc BCom SyllabusSyllabus
Disclaimer: Some content is used under fair use for Educational Purposes. Copyright Disclaimer under Section 107 of the Copyright Act 1976, allowance is made for "fair use" for purposes such as criticism, comment, news reporting, teaching, scholarship, and research. Fair use is a use permitted by copyright statute that might otherwise be infringing. Non-profit, educational or personal use tips the balance in favor of fair use.
This website will not be responsible at all in case of minor or major mistakes or inaccuracy. I hereby declare that all the information provided by this website is true and accurate according to the news papers and official notices or advertisement or information brochure etc. But sometimes might be happened mistakes by website owner by any means just as typing error or eye deception or other or from recruiter side. Our effort and intention is to provide correct details as much as possible, before taking any action please look into the news papes, official notice or advertisement or portal. "I Hope You Will Understand Our Word".